Philadelphia University Faculty of Science Department of biotechnology and Genetic Engineering Academic year (2022/2023)

Approval date:

Issue:

Credit hours (2)

Course Syllabus

Bachelor

Course information

Course#	Course title			Prerequisite		
¥ £ • £ £ ¥	Protein Biotechnology					• Y £ • I • V
Course type			Class ti	me	Room #	
□ University Requirement □ Faculty Requirement			S&Tı	u	1001	
🖾 Major Requirement		□ Elective	⊠ Compulsory	8:15-9:	30	

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Dr. Sameer Masoud	2-1013	2214	S & Tu 11:00-12:00) M & W (12:30-1:30)	smasoud@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method				
☐ Physical ☐ Online ☐ Blended				
Learning Model				
Precentage	Synchronous	Asynchronous	Physical	
			100%	

Course Description

The course will discuss current and newly emerging technologies in expressing and preparing proteins using bacteria or tissue culture technology. Construction of 3-dimensional structures of proteins, determination of active and functional sites with emphasis on studying .enzymes and antibodies

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes		
	Knowledge			
Kp1	Understand and recognize the biochemical,			
	molecular and cellular structure of organisms and			
	biological systems.			
Kp2	Understand concepts, applications and regulations			
	of the existing and emerging methods of			
	biotechnology and the role of bio-entrepreneurs in			
	the successful commercial innovations.			
	Skills			
Sp4	Use the appropriate computational tools and			
	databases to make sense of the molecular data			
	((DNA, RNA and Protein			
Competencies				
Cp2	Demonstrate critical thinking skills utilize a wide			
	range of information sources and communicate			
	.through oral presentations and written reports			

Learning Resources

Course textbook	Title: Protein Biochemistry and Biotechnology (2nd Edition);			
	Author/Editor: Gary Walsh			
	Publisher: Wiley Blackwell, (2014);			
	ISBN: (978-0-470-66986-0 & 978-0-470-66985-3			
Supporting References	.) Protein purification techniques: a practical			
	approach; Roe, Simon (ed.); Oxford University Press,			
	2000 (572.6 PRO.(
	2. Protein purification applications: a practical			
	approach; Roe, Simon (ed.); Oxford University Press,			
	2001 (572.6 PRO)			
Supporting websites	Gene banks contain amino acid sequences and structures			
	of different proteins are easily accessible. Also, several			
	animations of protein structure and interaction are			
	available in the internet.			
Teaching Environment	⊠Classroom □ laboratory □Learning platform □Other			

Meetings and subjects timetable

Week	Торіс	Learning Methods	Tasks	Learning Material
1&2	Chapter 1: Proteins and proteomics 1.1 Proteins, an introduction (1) 1.2 Genes, genomics and proteomics (2) 1.3 Bioinformatics (12) 1.4 Proteomics: goals and applications (14)	Pages 1-22		
3&5	Chapter 2: Protein structure and engineering 2.1 Primary structure (25) 2.2 Higher-level structure (36) 2.3 Protein classification on the basis of structure (41) 2.4 Protein structural stability (45) 2.5 Higher-order structure prediction (47) 2.6 Protein folding (48) 2.7 Intrinsically disordered proteins (50) 2.8 Protein engineering (51) 2.9 Protein post-translational modification (54)	Pages 25-62		
6&7	 Chapter 3 Protein sources Recombinant versus non-recombinant production (65) 2 Approaches to recombinant protein production (67) 3 Heterologous protein production in <i>E. coli</i> (72) 4 Heterologous production in bacteria other than <i>E. coli</i> (77) 5 Heterologous protein production in yeast (77) 6 Heterologous protein production in fungi (78) 7 Proteins from plants (80) 8 Animal tissue as a protein source (84) 9 Heterologous protein production in transgenic animals (85) 10 Heterologous protein production using animal cell culture (86) 	Pages 65-88		
8&9	Chapter 4 Protein purification and characterization 4.1 Protein detection and quantification (93) 4.2 Initial recovery of protein (95) 4.3 Removal of whole cells and cell debris (98) 4.4 Concentration (103)	Pages 91-139		

	4.5 Chromatographic purification		
	(107)		
	4.6 Protein inactivation and		
	stabilization (128)		
	4.7 Protein characterization (137)		
	Chapter 5: Large-scale protein production	Pages 141-17	
	141		
	5.1 Upstream processing (141)		
	5.2 Downstream processing (154)		
10	5.3 Therapeutic protein production:		
10	some special issues (163)		
	5.4 Range and medical significance of		
	impurities potentially		
	present in protein-based		
	therapeutic products (166)		
	Chapter 6: Therapeutic proteins: blood	Pages 177-202	
	products, vaccines and enzymes		
	Chapter 7: Therapeutic antibodies	Pages 205-230	
	Chapter 8: Hormones and growth	Pages 233-253	
	factors used therapeutically	0	
	Chapter 9: Interferons, interleukins and	Pages 257-274	
	tumour necrosis factors	0	
	Chapter 10: Proteins used for analytical	Pages 277-309	
12-15	nurnoses		
	Chanter 11. Industrial enzymes: an	Pages 311-325	
	introduction	1 uges 511 526	
	Chanter 12: Industrial enzymes:	Pages 327-367	
	protoosos and carbohydrosos	1 ages 527-507	
	Chapter 13: Additional industrial	Dogos 371 300	
	chapter 15. Adultional muustrial	1 ages 571-590	
	Chapter 14. Non actalytic inductrial	Dagag 202 414	
	Chapter 14: Non-catalytic industrial	rages 393-414	
1.6	proteins		
16	Final Exam		

* includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	% 30	Week 7	
Various Assessments *	% 20	Four Quizzes	
various Assessments *	%1.	Term Paper	
Final Exam	% 40	Week 16	
Total	%100		

* includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Course Polices

Policy	Policy Requirements					
Passing Grade	The minimum passing grade for the course is (50%) and the minimum final					
	mark recorded on transcript is (35%).					
	• Missing an exam without a valid excuse will result in a zero grade to					
	be assigned to the exam or assessment.					
Missing	• A Student who misses an exam or scheduled assessment, for a					
Exams	legitimate reason, must submit an official written excuse within a					
	week from the an exam or assessment due date.					
	• A student who has an excuse for missing a final exam should submit					
	the excuse to the dean within three days of the missed exam date.					
Attendance	The student is not allowed to be absent more than (15%) of the total hours					
	prescribed for the course, which equates to six lectures days (M, W) and					
	seven lectures (S,T,R). If the student misses more than (15%) of the total					
	hours prescribed for the course without a satisfactory excuse accepted by the					
	dean of the faculty, s/he will be prohibited from taking the final exam and					
	the grade in that course is considered (zero), but if the absence is due to					
	illness or a compulsive excuse accepted by the dean of the college, then					
	withdrawal grade will be recorded.					
Academic	Philadelphia University pays special attention to the issue of academic					
Honesty	integrity, and the penalties stipulated in the university's instructions are					
	applied to those who are proven to have committed an act that violates					
	academic integrity, such as: cheating, plagiarism (academic theft), collusion,					
	and violating intellectual property rights.					